30/07/2025
127 views
1 likes
More than one star contributes to the irregular shape of NGC 6072 – Webb’s newest look at this planetary nebula in the near- and mid-infrared shows what may appear as a very messy scene resembling splattered paint. However, the unusual, asymmetrical scene hints at more complicated mechanisms underway, as the star central to the scene approaches the very final stages of its life and expels shells of material, losing up to 80 percent of its mass.
Since their discovery in the late 1700s, astronomers have learned that planetary nebulae, or the expanding shell of glowing gas expelled by a low-intermediate mass star late in its life, can come in all shapes and sizes. Most planetary nebulae present as circular, elliptical, or bi-polar, but some stray from the norm, as seen in new high-resolution images of the planetary nebula NGC 6072 by the NASA/ESA/CSA James Webb Space Telescope.
In Webb’s NIRCam (Near-Infrared Camera) view of the object, it’s readily apparent that this nebula is multi-polar. This means there are several different elliptical outflows jetting out either way from the centre. These outflows compress gas towards the equatorial plane and create a disc. Astronomers say this is evidence that there are likely at least two stars at the centre of this scene. Specifically, a companion star is interacting with an aging star that had already begun to shed some of its outer layers of gas and dust.
The central region of the planetary nebula glows from the hot stellar core, seen as a light blue hue in near-infrared light. The dark orange material, which is made up of gas and dust, follows pockets or open areas that appear dark blue. This clumpiness could be created when dense molecules formed while being shielded from hot radiation from the central star. There could also be a time element at play. Over thousands of years, inner fast winds could be ploughing through the halo cast off from the main star when it first started to lose mass.
The longer wavelengths captured by Webb’s MIRI (Mid-Infrared Instrument) are highlighting dust, revealing the star researchers suspect could be central to this scene. It appears as a small pink-white dot in this image. Webb’s look in the mid-infrared wavelength also reveals concentric rings expanding from the central region, the most obvious circling just past the edges of the lobes.
This may be additional evidence of a secondary star at the centre of the scene hidden from our view. The secondary star, as it circles repeatedly around the original star, could have carved out rings of material in a spiral pattern as the main star was expelling mass during an earlier stage of its life.
The red areas in NIRCam and blue areas in MIRI both trace cool molecular gas (likely molecular hydrogen) while central regions trace hot ionized gas.
Planetary nebulae will remain a topic of study for astronomers using Webb who hope to learn more about the full life cycle of stars and how they impact their surrounding environments. As the star at the centre of a planetary nebula cools and fades, the nebula will gradually dissipate into the interstellar medium – contributing enriched material that helps form new stars and planetary systems, now containing those heavier elements.
Webb’s imaging of NGC 6072 opens the door to studying how the planetary nebulae with more complex shapes contribute to this process.
More information
Webb is the largest, most powerful telescope ever launched into space. Under an international collaboration agreement, ESA provided the telescope’s launch service, using the Ariane 5 launch vehicle. Working with partners, ESA was responsible for the development and qualification of Ariane 5 adaptations for the Webb mission and for the procurement of the launch service by Arianespace. ESA also provided the workhorse spectrograph NIRSpec and 50% of the mid-infrared instrument MIRI, which was designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.
Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA).
Contact:
ESA Media relations
media@esa.int